Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
2.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2103.01896v1

ABSTRACT

We report the discovery of KMT-2020-BLG-0414Lb, with a planet-to-host mass ratio $q_2 = 0.9$--$1.2 \times 10^{-5} = 3$--$4~q_{\oplus}$ at $1\sigma$, which is the lowest mass-ratio microlensing planet to date. Together with two other recent discoveries ($4 \lesssim q/q_\oplus \lesssim 6$), it fills out the previous empty sector at the bottom of the triangular $(\log s, \log q)$ diagram, where $s$ is the planet-host separation in units of the angular Einstein radius $\theta_{\rm E}$. Hence, these discoveries call into question the existence, or at least the strength, of the break in the mass-ratio function that was previously suggested to account for the paucity of very low-$q$ planets. Due to the extreme magnification of the event, $A_{\rm max}\sim 1450$ for the underlying single-lens event, its light curve revealed a second companion with $q_3 \sim 0.05$ and $|\log s_3| \sim 1$, i.e., a factor $\sim 10$ closer to or farther from the host in projection. The measurements of the microlens parallax $\pi_{\rm E}$ and the angular Einstein radius $\theta_{\rm E}$ allow estimates of the host, planet, and second companion masses, $(M_1, M_2, M_3) \sim (0.3M_{\odot}, 1.0M_{\oplus}, 17M_{J})$, the planet and second companion projected separations, $(a_{\perp,2}, a_{\perp,3}) \sim (1.5, 0.15~{\rm or}~15)$~au, and system distance $D_{\rm L} \sim 1$ kpc. The lens could account for most or all of the blended light ($I \sim 19.3$) and so can be studied immediately with high-resolution photometric and spectroscopic observations that can further clarify the nature of the system. The planet was found as part of a new program of high-cadence follow-up observations of high-magnification events. The detection of this planet, despite the considerable difficulties imposed by Covid-19 (two KMT sites and OGLE were shut down), illustrates the potential utility of this program.


Subject(s)
COVID-19
3.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3770007

ABSTRACT

Background: The genome of SARS-CoV-2 has shown considerable variation during its spreading. Monitoring variations in the virus genome to understand the evolution and spread of the virus is extremely important. Methods: Seven SARS-CoV-2 strains (BB127, BB183, HB030, MAS525, HF3028, FY1494, and SZ005) circulating in Anhui Province, China were isolated and sequenced for evolutionary analysis. Five strains were further cultured in vitro and were subjected to viral growth assay, TCID50 assay, and detection of spike protein expression. Next generation sequence (NGS) analysis were applied to investigate the mutation frequencies throughout the whole genome at different time gradients in vitro. Findings: Our observations revealed that in vitro cultured SARS-CoV-2 virus had much higher mutation frequency (up to ~20 times) than that in infected patients, and the mutation in nonstructural protein 14 (nsp14) might increase the genomic mutation frequency. Different strains had various amount of spike protein which may positively correlated with the virus replication capacity but may be influenced by other viral factors. Interpretation: Our study suggested that SARS-CoV-2 has the potential to diversify under favorable conditions. Monitoring viral mutations is not only helpful for better understanding of virus evolution and virulence change, but also the key to prevent virus transmission and disease progression. SARS-CoV-2 genomic variation analysis may also provide potential ideas for more efficient vaccine development and clinical treatment. Funding: This work is funded by Special Project for Emergency Scientific and Technological Research on New Coronavirus Infection (YG, No. YD9110002001), Emergency Research Project of Novel Coronavirus Infection of Anhui Province (Grant numbers 202004a07020002; 202004a07020004), Postdoctoral Research Foundation of China (2020M670084ZX) and the Fundamental Research Funds for the Central Universities (WK9110000166; WK9110000167).Declaration of Interests: We declare no competing interests.Ethics Approval Statement: The study was conformed to the principles of the Declaration ofHelsinki and approved by the Ethics Committee of the First Affiliated Hospital of USTC..


Subject(s)
Emergencies
SELECTION OF CITATIONS
SEARCH DETAIL